

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MATHEMATICS

4728

Mechanics 1

Monday

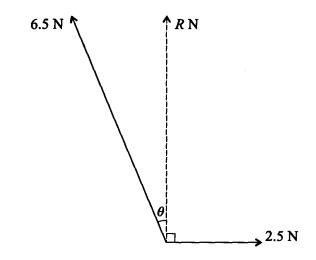
22 MAY 2006

Morning

1 hour 30 minutes

Additional materials: 8 page answer booklet Graph paper List of Formulae (MF1)

TIME 1 hour 30 minutes


INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- The acceleration due to gravity is denoted by $g \,\mathrm{m}\,\mathrm{s}^{-2}$. Unless otherwise instructed, when a numerical value is needed, use g = 9.8.
- You are permitted to use a graphical calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72.
- Questions carrying smaller numbers of marks are printed earlier in the paper, and questions carrying larger numbers of marks later in the paper.
- You are reminded of the need for clear presentation in your answers.

1 Each of two wagons has an unloaded mass of 1200 kg. One of the wagons carries a load of mass m kg and the other wagon is unloaded. The wagons are moving towards each other on the same rails, each with speed 3 m s^{-1} , when they collide. Immediately after the collision the loaded wagon is at rest and the speed of the unloaded wagon is 5 m s^{-1} . Find the value of m. [5]

Forces of magnitudes 6.5 N and 2.5 N act at a point in the directions shown. The resultant of the two forces has magnitude R N and acts at right angles to the force of magnitude 2.5 N (see diagram).

(i) Show that $\theta = 22.6^{\circ}$, correct to 3 significant figures. [3]

(ii) Find t	he value	of <i>R</i> .
-------------	----------	---------------

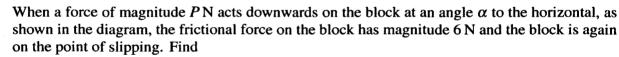
2

- 3 A man travels 360 m along a straight road. He walks for the first 120 m at 1.5 m s^{-1} , runs the next 180 m at 4.5 m s^{-1} , and then walks the final 60 m at 1.5 m s^{-1} . The man's displacement from his starting point after t seconds is x metres.
 - (i) Sketch the (t, x) graph for the journey, showing the values of t for which x = 120, 300 and 360. [5]

A woman jogs the same 360 m route at constant speed, starting at the same instant as the man and finishing at the same instant as the man.

- (ii) Draw a dotted line on your (t, x) graph to represent the woman's journey. [1]
- (iii) Calculate the value of t at which the man overtakes the woman. [5]

[3]

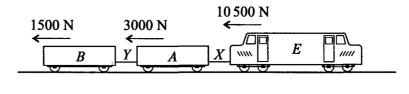

4 A cyclist travels along a straight road. Her velocity $v m s^{-1}$, at time t seconds after starting from a point O, is given by

$$v = 2$$
 for $0 \le t \le 10$,
 $v = 0.03t^2 - 0.3t + 2$ for $t \ge 10$.

- (i) Find the displacement of the cyclist from O when t = 10.
- (ii) Show that, for $t \ge 10$, the displacement of the cyclist from O is given by the expression $0.01t^3 0.15t^2 + 2t + 5$. [4]
- (iii) Find the time when the acceleration of the cyclist is 0.6 m s^{-2} . Hence find the displacement of the cyclist from *O* when her acceleration is 0.6 m s^{-2} . [5]
- 5 A block of mass $m \log is$ at rest on a horizontal plane. The coefficient of friction between the block and the plane is 0.2.
 - (i) When a horizontal force of magnitude 5 N acts on the block, the block is on the point of slipping. Find the value of *m*. [3]

PN

(ii)



- (a) the value of α in degrees,
- (b) the value of P.

[8]

[1]

[Questions 6 and 7 are printed overleaf.]

direction of motion

A train of total mass $80\,000\,\text{kg}$ consists of an engine E and two trucks A and B. The engine E and truck A are connected by a rigid coupling X, and trucks A and B are connected by another rigid coupling Y. The couplings are light and horizontal. The train is moving along a straight horizontal track. The resistances to motion acting on E, A and B are 10 500 N, 3000 N and 1500 N respectively (see diagram).

- (i) By modelling the whole train as a single particle, show that it is decelerating when the driving force of the engine is less than 15 000 N. [2]
- (ii) Show that, when the magnitude of the driving force is $35\,000\,\text{N}$, the acceleration of the train is $0.25\,\text{m}\,\text{s}^{-2}$. [2]
- (iii) Hence find the mass of *E*, given that the tension in the coupling *X* is 8500 N when the magnitude of the driving force is 35 000 N. [3]

The driving force is replaced by a braking force of magnitude $15\,000\,\text{N}$ acting on the engine. The force exerted by the coupling Y is zero.

(iv) Find the mass of B.	[5]

- (v) Show that the coupling X exerts a forward force of magnitude 1500 N on the engine. [2]
- 7 A particle of mass 0.1 kg is at rest at a point A on a rough plane inclined at 15° to the horizontal. The particle is given an initial velocity of 6 m s⁻¹ and starts to move up a line of greatest slope of the plane. The particle comes to instantaneous rest after 1.5 s.

(i)	Find the coefficient of friction between the particle and the plane.	[7]
(ii)	Show that, after coming to instantaneous rest, the particle moves down the plane.	[2]

(iii) Find the speed with which the particle passes through A during its downward motion. [6]

4

6

1	Momentum before = $3M - 1200 \times 3$	B1		Ignore g if included; accept
				inconsistent directions
	Momentum after = 1200×5	B1		
				(or loss of momentum of loaded
				wagon = $3M$ B1
				gain of momentum of unloaded
				wagon = $1200(5+3)$ B1)
	3M - 3600 = 6000	M1		Equation with all terms; accept with
				g
	3(1200 + m) - 3600 = 6000	A1		For any correct equation in m, M
	m = 2000	A1	5	

2	(i)		M1		For resolving forces in the i direction or for relevant use of trigonometry
		$2.5 = 6.5 \sin \theta$	A1		
		$\theta = 22.6^{\circ}$	A1	3	AG Accept verification
	(ii)		M1		For resolving forces in the j direction or for using Pythagoras or relevant trigonometry.
		$R = 6.5 \cos 22.6^{\circ}$	A1		
		R = 6	A1	3	

3	(i)		B1 B1 B1	Line segment AB (say) of +ve slope from origin Line segment BC (say) of steeper +ve slope and shorter time interval than those for AB . SR : If the straight line segments are joined by curves, this B1 mark is not awarded Line segment CD (say) of less steep slope compared with BC . (An (x, t) graph is accepted and the references to more/less steep are reversed.)
		Time intervals 80, 40, 40 t = 80, 120, 160	B1 B1	May be implied; any 2 correct
	(ii)	Line joining (0, 0) and (160, 360)	B1 ft 6	
	(iii)	v = 360/160	M1 M1	Woman's velocity (= 2.25) For equation of man's displacement in relevant interval
		s = 120 + 4.5(t - 80) 2.25t	A1 M1	Accept omission of -80 Woman's displacement, awarded even if <i>t</i> is interpreted differently in man's expression Accept also 106.6, 106.7 but not 106
		$t = 106 \frac{2}{3}$ (107)	A1 5	Accept also 100.0, 100.7 but lift 100
		<i>SR</i> Construction method Plotting points on graph paper <i>t</i> between 104 and 109 inclusive	M1 A1	Candidates reading the <u>displacement</u> intersection from graph, then dividing this distance by the woman's speed to find <i>t</i> , also get v = 360/160 M1 as above for the woman's velocity.

4	(i)	Displacement is 20 m	B1	1	20+c (from integration) B0
	(ii)	$s(t) = 0.01t^{3} - 0.15t^{2} + 2t (+A)$ 10 - 15 + 20 + A = 20 Displacement is 0.01t^{3} - 0.15t^{2} + 2t + 5	M1 A1 M1 A1	4	For using $s(t) = \int v(t)dt$ Can be awarded prior to cancelling For using $s(10) = cv$ (20) AG
	(iii)	a = 0.06t - 0.3 0.06t - 0.3 = 0.6 t = 15 Displacement is 35 m	M1 A1 DM1 A1 B1		For using $a(t) = dv/dt$ For starting solving $a(t) = 0.6$ depends on previous M1

5(i)M1For using $F = 5$ $R = mg$ M1A1Accept 2.5 or 2	b and $F = \mu R$
m = 2.55 A1 3 Accept 2.5 or 2	
L	
	2.6
(ii)a $P\cos\alpha = 6$ B1	
	vertically with 3
distinct forces	
$R = P\sin\alpha + 25 \qquad \text{A1ft} \qquad \text{Or } P\sin\alpha + (c)$	
0.2R = 6 B1 For using F = 6	6 and $F = \mu R$. Can be
implied by 0.20	$(P\sin \alpha + 25) = 6$
$0.2(P\sin\alpha + 25) = 6$ M1 For an equation	n in $P\sin\alpha$ (=5)after
elimination of A	
$\alpha = 39.8^{\circ}$ A1 Accept a r t 40 ^o	
-	g or substituting for
	Evidence is needed
	lue of $P\sin\alpha$ (rather
	al frictional force)
P = 7.81 A1 8 Accept a r t 7.8	
6 (i) 10500 + 3000 + 1500 M1 For summing 3	3 resistances
	ised case or specific
retardation 2 instance	
*	nd law for whole train
Acceleration is 0.25 ms^{-2} A12AG Accept ver	
	lewton's second law
	ast 2 forces out of the
relevant 3.	
$35000 - 10500 - 8500 = 0.25m \qquad A1$	
Mass is 64000 kg A1 3	
	lewton's second law
with all approp	
-15000 - 15000 = 80000a OR A1 $a = -0.375$	
-3000-10500-15000=(80000 - <i>m</i>) <i>a</i>	
M1 For applying N	lewton's second law
to <i>B</i> only, only	1 force
-1500 = ma A1 Or $cv(a)$	
Mass is 4000 kg A1 5	
	$n \operatorname{cv}(m_{\mathrm{E}}, a)$, or accept
$= 64000(-0.375)$ B1ft use of $m_{\rm E}$, a	
$T = \pm 1500 \Rightarrow$ forward force on E	
of 1500 N B1 2	
OR (working with A and B)	
	$n \operatorname{cv}(m_{\mathrm{E}}, a)$, or accept
$= (80000 - 64000)(-0.375)$ B1ft use of $m_{\rm E}$, a	
$T = \pm 1500 \Rightarrow$ forward force on E B1	
of 1500	

-			3.61		
7	(i)	$0 = 6 + (\pm)1.5a$	M1		For using $v = u + at$ with $v = 0$
		$a = (\mp)4\text{ms}^{-2}$	A1		
		$-mg\sin 15^\circ - F = ma$	M1		For applying Newton's second law
					with 2 forces
		$-0.1 \times 9.8 \sin 15^{\circ} - F = 0.1 \times (-4)$	A1		
		$R = 0.1g\cos 15^{\circ}$	B1		
		$0.146357 \ldots = \mu \ 0.946607 \ldots$	M1		For using $F = \mu R$
		Coefficient is 0.155	A1	7	Anything between 0.15 and 0.16
					inclusive
[(ii)	$mgsin15^{\circ} > \mu mgcos15^{\circ}$	M1		For comparing weight component
		(or $\tan 15^{\circ} > \mu$)			with frictional force (or tan 'angle of
					friction' with μ)
		→ particle moves down	A1	2	Awarded if conclusion is correct
					even though values are wrong
	(iii)	$(6+0) \div 2 = s \div 1.5$	M1		For using $(u + v) \div 2 = s \div t$
		s = 4.5	A1		
		$mg\sin 15^{\circ} - F = ma$	M1		For using Newton's second law with
		-			2 forces
		$0.25364 \dots - 0.146357 \dots = 0.1a$	A1		Values must be correct even if not
					explicitly stated. Note that the
					correct value of friction may
					legitimately arise from a wrong
					value of μ and a wrong value of R
		$v^2 = 2(1.07285 \dots)4.5$	M1		For using $v^2 = 2as$ with any value of
		,			a
		Speed is 3.11 ms ⁻¹	A1	6	Accept anything rounding to 3.1
					from correct working